Подземная гидроизоляция: памятка проектировщику

Подземная гидроизоляция: памятка проектировщику

Проектирование гидроизоляции подземных сооружений

С точки зрения биостойкости, весьма эффективными гидроизоляционными материалами были материалы на основе каменноугольного дегтя, производимыми отечественной промышленностью до 1970-х гг. прошлого века. К ним относились толь и толькожа различных марок. Их производство было прекращено из-за производственной вредности дегтя и переведено на более экологичный нефтяной битум. Взамен институтом ВНИИСтройполимер были предложены биостойкие полимерные рулонные гидроизоляционные материалы, такие как: пленки ПДБ, гидробутил, армогидробутил, изол, которые в течение длительной практической апробации более 30 лет эффективно служили и служат в подземной гидроизоляции.

Проектировщикам важно ориентироваться на зарекомендовавшие себя конструктивные решения, отвечающие требованиям СниПов, ВСНов и других нормативных документов. Однако на сегодня в области кровли и подземной гидроизоляции сооружений сложилась парадоксальная ситуация.

Основное количество упомянутых документов было разработано до 1990 г. прошлого века и ориентировано на использование битуминозных материалов, в то время как полимерные материалы оставлены без внимания. Между тем, эксплуатационной практикой давно установлено: реальная долговечность битуминозных (в т. ч. битумполимерных) материалов в условиях подземной гидроизоляции не превышает пяти-десяти лет.

Полимерные кровельные и гидроизоляционные материалы являются биостойкими и в условиях подземной гидроизоляции могут сохранять высокие гидроизоляционные функции в течение многих десятилетий. Такие материалы получили широкое распространение преимущественно при устройстве новых и ремонте старых кровель.


Полимерная наружняя гидроизоляция Кровлелоном бетонного основания подземной части Москва-Сити

Проектирование гидроизоляции зданий

Гидроизоляция в широком смысле этого слова представляет собой совокупность конструктивных решений и мероприятий, сочетающих в себе специально подобранные материалы и технологические приемы сборки их в единое целое, обеспечивающие:

  1. Отвод внешних вод от подземных частей зданий и сооружений посредством дренажа (не рассматривается);
  2. Недопущение в процессе строительства, ремонта и эксплуатации здания распространения сырости и влаги внутрь подвалов, паркингов и первых этажей через материалы несущих конструкций и ограждений посредством создания сплошного водоизоляционного контура или мембраны;
  3. Недопущение в процессе строительства, ремонта и эксплуатации здания выходов конденсата (течей) посредством поддержания тепло-влажностного режима внутри помещений на заданном уровне за счет монтажа расчетного количества утеплителя и/или устройства естественной или принудительной вентиляции.

Гидроизоляционный контур или мембрана должны обеспечивать:

  • водонепроницаемость всей изолируемой поверхности;
  • водо-, био- и химзащиту изолируемой поверхности;
  • собственную эластичность или трещиностойкость во времени и в интервале расчетных температур, обусловливающие эксплуатационную надежность при длительном контакте с водой, с балластом и под воздействием касательных напряжений, например, при осадке фундамента здания и/или пучении грунта;
  • сплошность при образовании на изолируемой поверхности трещин с раскрытием в пределах норм проектирования.

Отсутствие или неудовлетворительная гидроизоляция проявляет себя:

  1. Прямыми затоплениями подвалов преимущественно в весенне-осенние периоды;
  2. Капиллярным подъемом влаги (сырости) по материалам несущих и ограждающих конструкций;
  3. Ускоренным разрушением несущих и ограждающих конструкций фундаментов при наличии агрессивных соединений в грунтовых водах;
  4. Сыростью и выходами конденсата на стенах помещений подвалов и первых этажей зданий и, как следствие этого, неудовлетворительным микроклиматом внутри названных помещений (в частности, развитием грибка и плесени).

Стоимость правильно запроектированной и выполненной гидроизоляции значительно меньше общей стоимости возводимого объекта. Ремонт вышедшей из строя гидроизоляции сопряжен со значительными материальными затратами. В этой связи все заглубленные сооружения должны быть заключены в надежные водоизоляционные оболочки или мембраны. Мембранную гидроизоляцию предусматривают, как правило, по наружной поверхности конструкции со стороны воздействия воды (на прижим) и высотой выше максимального уровня грунтовых вод не менее чем на 0,5 м. В случаях высокого залегания уровня грунтовых вод предусматривают проведение мероприятий по водопонижению на глубину не менее 0,5 м от нижней отметки возводимого или ремонтируемого строения.

При гидроизоляции со стороны, противоположной напору воды (на отрыв), предусматривают прижимные противонапорные конструкции. Мембранную гидроизоляцию «на прижим» применяют преимущественно при новом строительстве, а гидроизоляцию «на отрыв» с подпорной стенкой преимущественно при ремонте. Перед ремонтом гидроизоляции проводят обследование первых этажей зданий, подвалов и внутренних помещений заглубленных сооружений, с тем чтобы выяснить причины поступления воды и влаги внутрь помещений. Проверяют проектную документацию, проводят визуальный осмотр, определяют исправность дренажной системы, ищут течи и выходы конденсата. На основании проведенного обследования дают заключение о причинах протечек.

Для предохранения мембраны от механических повреждений, возникающих вследствие оползней, морозного пучения грунта в проекте предусматривают внешние защитные ограждения из железобетона или кирпича. В качестве защиты также используют деревянные щиты, фанеру или любой другой дешевый или подручный материал. Количество отверстий в мембране для выхода арматуры или ввода-вывода коммуникаций должно быть минимальным. При этом конструкции выходов арматуры или вводов-выводов коммуникаций должны быть отражены в проекте. Для предотвращения капиллярного подъема влаги по стенам фундамента и первых этажей зданий предусматривают отсечную гидроизоляцию.

Видео гидроизоляции подземной части торгово-развлекательного комплекса

Примеры конструктивных решений гидроизоляции при новом строительстве и ремонте

Из множества вариантов гидроизоляции заглубленных сооружений остановимся на наиболее типичных схемах гидроизоляции:

  • нижней части строения на опорах (коттеджа) (рис. 1);
  • подвала здания выше водного горизонта при новом строительстве (рис. 2);
  • подвала здания выше водного горизонта при ремонте (рис. 3);
  • подвала здания ниже водного горизонта при ремонте (рис. 4).

На рис. 1 дана схема утепления и гидроизоляции пола коттеджа или легкого дачного домика, построенного на опорах. Схема применяется при высоком уровне залегания грунтовых вод, на 20-30 см ниже поверхности земли. Вариант может быть реализован как при новом строительстве, так и при ремонте. Окрасочную гидроизоляцию из двух-трех слоев мастики Унимаст выполняют по всем поверхностям, расположенным вблизи поверхности земли, подверженным воздействию снега и воды. Высохшую пленку мастики с видимых сторон можно окрашивать водоэмульсионной или масляной красками. Конструкция пола усилена сборной клееной или сварной мембраной.

На рис. 2 дана схема гидроизоляции заглубленных помещений от сырости выше уровня водоносного горизонта при новом строительстве. В этом случае риск проникновения воды довольно высок вследствие близости к водоносному горизонту. Кроме того, время от времени за счет поверхностных вод уровень грунтовой воды может меняться. Также имеется риск зимнего пучения грунта. Мембрана расположена (на прижим) из расчета позитивного давления воды. Часть мембраны, выступающая выше уровня земли, обложена красным кирпичом. Мембрана также положена под отмосткой для отведения дождевой воды от фундамента. Вокруг фундамента устроена засыпка из щебня, обернутая геотекстилем. Совершенный трубчатый дренаж выведен в колодец (не показан), дно которого ниже уровня водоносного горизонта и достигает водоупора. Защитные панели предохраняют поверхность мембраны от повреждения щебнем. В качестве защиты используют деревянные щиты, фанеру или другой материал. Здесь также желательно использовать листы пристенной дренажной системы.

На рис. 3 дана схема ремонта гидроизоляции подвала без выемки грунта вокруг фундамента, расположенного выше уровня грунтовых вод. Здесь воздействие гидростатического давления относительно кратковременно, его можно не учитывать. План ремонта предусматривает проведение предварительных мероприятий, обеспечивающих удаление влаги из стен и полов заглубленного помещения всеми известными способами. После сушки все изолируемые поверхности выравнивают. Затем создают обмазочную мембрану из двух-трех слоев мастики или (для повышения надежности гидроизоляции) монтируют клеевую мембрану. Для предотвращения отложения и выходов конденсата при эксплуатации устраивают вентиляцию и монтируют расчетное количество утеплителя. Во время производства гидроизоляционных работ в закрытом помещении предусматривают приточно-вытяжную вентиляцию и все необходимые противопожарные мероприятия.

Читайте также  Что сделать, чтобы не скрипели деревянные полы – способы устранения скрипа

На рис. 4 дана схема ремонта гидроизоляции здания без выемки грунта вокруг фундамента заглубленного ниже уровня водоносного горизонта. Высокий уровень подземной воды искусственно понижают, а несущие конструкции и ограждения высушивают известными способами.

Условные обозначения к рисункам:

  1. Мембрана;
  2. Два-три слоя мастики;
  3. Пол (деревянный);
  4. Теплоизоляция;
  5. Бетонная подготовка;
  6. Засыпка из щебня;
  7. Защитная панель;
  8. Навесная панель;
  9. Листы пристенного дренажа;
  10. Мембрана аварийная;
  11. Мембрана отсечная новая.

Источник:
http://gidrol.ru/podzemnaja-gidroizoljatsija-pamjatka-proektirovshiku.html

Гидроизоляция подземных сооружений

Гидроизоляция подземных сооружений – это комплекс мероприятий, целью которых является защита бетонных конструкций от воздействия грунтовых и стоковых вод. Компания «ГидроЭксперт» предлагает полный спектр услуг, связанных с гидроизоляцией фундаментов, цокольных этажей, поземных парковочных комплексов, туннелей и других подобных сооружений. Специалисты компании разработают проект защиты зданий от воды и влаги, после чего реализуют его на практике по выгодным тарифам.

Гидрофизические нагрузки, воздействующие на подземные части строительных конструкций

Фундамент, подвалы и цокольные этажи на протяжении всего срока эксплуатации будут контактировать с подземными водами различного происхождения. Поэтому материалы для гидроизоляции таких сооружений нужно выбирать с учётом особенностей местности и климата. При этом необходимо понимать, что на элементы строительных конструкций, которые располагаются ниже нулевой отметки, будут постоянно воздействовать минимум 3 вида геофизических нагрузок:

  1. Естественная влажность почвы. Вода, находящаяся в естественном грунте, на котором построен объект, проникает в поры строительных материалов и постепенно разрушает их. Особенно это опасно для несущих конструкций. Чтобы этого не допустить, необходимо провести комплекс мер защиты ЖБИ от влаги с помощью противокапиллярной изоляции.
  2. Осадки. Их наличие и объём во многом определяется временем года. Эти безнапорные воды сами по себе не представляют опасности для сооружений, если они имеют надежную гидроизоляцию.
  3. Грунтовые воды. Это опасные напорные воды, которые могут серьёзно повредить строение, подмывая и разрушая его основу. Защищают здания противопаводковой изоляцией, устанавливаемой на этапе строительства объекта.

Для того чтобы повысить эффективность гидроизоляции, опытные специалисты проводят целый ряд дополнительных мероприятий, которые снижают вероятное негативное воздействие воды и влаги на подземные части сооружений. В число таких работ входит создание дренажной системы, перепланировка грунта, размещение специальных защитных щитов, преграждающих путь воде.

Таким образом, гидроизоляция фундаментов и подземных сооружений является неотъемлемой частью строительно-монтажных и отделочных работ. Нарушение целостности изоляции во время эксплуатации здания приводит к таким проблемам, как:

  • коррозия металлической арматуры ЖБИ;
  • разрушение несущих конструкций;
  • выход из строя электротехнических кабелей;
  • перебои в работе коммуникаций;
  • большая стоимость ремонта;
  • временное прекращение работы арендаторов подземных помещений.

Значительно усугубить данные негативные проявления могут такие факторы, как отсутствие или неправильная работа системы вентиляции.

Типы гидроизоляции подземной части зданий

Защита строений любого назначения от влаги организуется в процессе строительных работ. Только в этом случае обеспечивается свободный доступ ко всем частям углублённых в почву конструкций. Не менее важным моментом во время создания надёжной защиты строений от подземных вод является параллельное сооружение дренажной системы вокруг объекта.

Для целей защиты железобетонных изделий от влаги в любом её виде используют гидроизоляцию следующих видов:

  1. Первичная. Это специальные смеси и составы на основе бетона, которые сами по себе хорошо противостоят проникновению вглубь бетонных блоков воды и обладают высокой степенью морозоустойчивости. Таким образом, задача первичной гидроизоляции – исключение разрушения конструкции внешними воздействиями.
  2. Вторичная. Она представляет собой мембрану, создаваемую на поверхности строительного материала и препятствующую прямому воздействию влаги на основание подземного объекта. К таким видам изоляции относят жидкую резину, различные проникающие составы, ПВХ-мембраны. Так как в грунтовых водах содержится большое количество агрессивных веществ, изоляционные материалы должны хорошо противостоять их воздействию.

В случае, когда возникает необходимость восстановить целостность защиты строения от воды и влаги во время его эксплуатации, лучшим решением вопроса является инъектирование. Его главное достоинство – отсутствие необходимости проведения земляных работ, которые значительно увеличивают стоимость ремонта.

Компания «ГидроЭксперт» осуществляет все виды гидроизоляции подземной части зданий с использованием своих материалов или материалов заказчика.

Особенности подземной гидроизоляции методом инъектирования

Специалисты компании «ГидроЭксперт» разработают оптимальные технические условия для восстановления защиты строительных конструкций от подземных вод методом инъектирования и реализуют их своими силами. Список услуг компании включает:

  • инъектирование трещин;
  • инъектирование швов;
  • упрочняющие работы.

«ГидроЭксперт» берёт в работу объекты, находящиеся под воздействием различных гидрогеологических условий, вне зависимости любой от их площади, назначения и состояния. Специально обученный персонал компании располагает всем необходимым оборудованием и способен выполнить поставленную задачу в короткие сроки. Работа выполняется с высоким качеством и в соответствии с существующими строительными нормами и правилами.

Подготовительные работы

Вне зависимости от выбора технологии создания подземной гидроизоляции методом инъектирования, перед началом работ необходимо организовать и провести ряд обязательных подготовительных мероприятий. Они могут включать:

  • усиление прочности фундамента;
  • повышение несущей способности подземных конструкций;
  • обеспечение сухости поверхности;
  • обеспечение чистоты обрабатываемых конструкций.

Дополнительно нужно уменьшить шероховатость поверхности, чтобы обеспечить максимальную адгезию изоляционного материала с бетоном. Перед началом инъектирования нужно внимательно осмотреть поверхность и удалить все отслоения, ржавчину, загрязнения. Обрабатывается не только бетон, но и вся арматура, имеющаяся на поверхности ЖБИ.

В каких случаях используется метод инъектирования

На подземные сооружения, имеющие сильно углублённый фундамент, наибольшее негативное воздействие оказывают грунтовые воды высокого напора. К таким объектам относят:

  • многоэтажные здания;
  • автопаркинги;
  • шахты;
  • подземные резервуары и склады;
  • промышленные сооружения.

Если нарушение гидроизоляции произошло во время эксплуатации строений, в большинстве случаев доступа к наружной части их подземных частей нет или он значительно затруднён. Справиться с проблемой можно только путём инъекционной гидроизоляции подземной части фундамента.

Компания «ГидроЭксперт» имеет большой опыт работы по созданию защиты от подземных напорных вод. В качестве водостойких материалов используются полимеризационные смеси, которые легко проникают в трещины строительных конструкций, заполняют собой швы и поры. При соприкосновении с водой они увеличиваются в объёме и способствуют прекращению негативного воздействия влаги на ЖБИ. В случаях, когда напор подземных вод низкий или средний, допускается использование специальных смол и других материалов с длительным периодом схватывания.

Материалы для инъектирования

Смеси для заделки пустот, швов, трещин и других полостей в подземных частях зданий должны обладать следующими свойствами:

  • небольшой вязкостью;
  • коррозионной стойкостью;
  • минимальной усадкой;
  • высокими проникающими способностями;
  • хорошей адгезией;
  • небольшим временем схватывания;
  • длительным сроком службы.

В основном такие растворы готовят на основе цемента, полиуретана и смол.

Полиуретановые материалы

Так как полиуретан совершенно не впитывает воду, он отлично подходит для инъектирования в заглублённые части строений. Полиуретан входи в состав различных смол, используемых для гидрозащиты. Контактируя с водой, смесь для инъекций застывает, надёжно перекрывая доступ влаги.

Эпоксидные смолы

Этот материал характеризуется не только высокой степенью устойчивости к воде и водяным парам, но и повышенной прочностью, что делает возможность его применения для заделки трещин в фундаменте и несущих конструкциях подземных объектов. Эпоксидная смола отлично проникает в самые мелкие поры и трещины, эффективно устраняя даже серьёзные разрушения. Используя такую смолу, можно не только создать барьер на пути воды, но и восстановить прочность строительной конструкции.

Читайте также  Краска молотковая – что это такое и как применяется

Полимерцементные составы

Если работы по гидроизоляции требуют большого расхода материала, используют полимерцементные составы. Они подаются в пустоты под большим давлением. После затвердевания такой материал приобретает прочность и устойчивость к подземным водам.

Источник:
http://gidro-exp.ru/services/uslugi-gidroizolyatsii/gidroizolyatsiya-podzemnykh-sooruzheniy/

Строительный справочник | материалы — конструкции — технологии

Гидроизоляция подземных сооружений

Гидроизоляция подземных сооружений. Гидроизоляция заглубленных сооружений. Гидроизоляция подвальных помещений. Категории гидрофизической нагрузки подземных вод. Мероприятия защиты от напорных грунтовых вод. Подготовительные работы при устройстве гидроизоляции. Различные типы гидроизоляции в зависимости от гидростатического напора. Значения максимального поднятия капиллярной влаги в зависимости от вида грунта. Тип гидроизоляции в зависимости от допустимой влажности воздуха в подвальных помещениях. Тип покрытия в зависимости от степени воздействия агрессивных подземных вод. Выбор типа гидроизоляции для защиты подземных конструкций от воздействия агрессивных подземных вод к определенному виду железобетонных конструкций.

Одной из актуальных проблем строительства и эксплуатации существующих зданий и сооружений является гидрозащита и восстановление несущей способности строительных конструкций. Вид и механизм увлажнения различные не только для одного объекта в целом, но и для отдельно взятой конструкции. Эффективная система защиты от увлажнения определяется только после выявления источника увлажнения, установления характера взаимодействия конструкции с окружающей средой и степени сохранности конструкционного и отделочного материалов. Вода действует на строительные конструкции с наружной или внутренней стороны (атмосферная и грунтовая).

Вода, действующая на конструкцию, может быть трех видов: фильтрационная, или просачивающаяся, вода возникает от дождевых, талых и случайных стоков и не оказывает на конструкцию гидростатического давления, если конструктивное решение обеспечивает беспрепятственное отекание воды без образования застойных зон; почвенная, или грунтовая, вода удерживается в грунте адгезионными и капиллярными силами и не оказывает на конструкцию гидростатического давления, если конструктивное решение обеспечивает беспрепятственное стекание воды без образования застойных зон; подземная вода обусловливается уровнем грунтовых вод в зависимости от рельефа местности и положением водоупорного слоя.

Три категории гидрофизической нагрузки подземных вод:

  • нагрузка влажностью материала строительной конструкции. Вода связана или двигается в порах и капиллярах строительных конструкций. Интенсивность нагрузки зависит от места нахождения, от источника влаги, пористости материала конструкции и температуры;
  • нагрузка свободно стекающей (гравитационной) водой (дождем) возникает под влиянием воды в жидком состоянии, которая не образует давления или образует очень низкое давление. Вода стекает вдоль вертикальных или наклонных поверхностей строительных конструкций, нигде не задерживается и не образует связную поверхность. Интенсивность нагрузки зависит от количества стекающей воды и уклона гидроизоляции;
  • нагрузка напорной водой (самая опасная) возникает под действием воды в жидком виде, измеряется гидростатическим давлением. В водопроницаемых материалах образуется связный уровень, под которым вода может распространяться во всех направлениях. Интенсивность нагрузки зависит от гидростатического давления воды.

От напорных грунтовых вод проводят следующие мероприятия:

  • дренирование;
  • формирование местности и объекта;
  • образование гидроизоляционной системы.

Эти мероприятия, прежде всего, влияют на изменение уровня подземной воды. Они не устраняют необходимость проведения самой гидроизоляции, но могут существенно снизить финансовые расходы на ее проведение.

От напорных вод можно применять:

  • конструктивные материалы (например, водоплотные бетоны);
  • особые гидроизоляционные слои;
  • инъецирование;
  • электроосмос;
  • «воздушное дупло».

Прежде, чем приступать к гидроизоляции подземных сооружений, необходимо выполнить следующие этапы:

  • получить техническое задание от заказчика;
  • провести обследование объекта с выбуриванием керна;
  • провести проходку шурфов;
  • установить наблюдение за гидрогеологической обстановкой: фиксируется максимальный уровень и химический состав воды, а также коэффициент фильтрации и кривая зернистости, состав земляного профиля, механическая стабильность почвы; химические температуры, биологические и электромагнитные влияния (т.е. коррозионная стойкость);
  • выдать техническое заключение по ремонту объекта, в котором учесть совместимость гидроизоляции с материалом конструкции;
  • провести работы в соответствии с выданным заключением.

В весенний период оттаивания повышается уровень грунтовых вод (УГВ), которые, взаимодействуя с минеральными и органическими частицами, изменяют свой химический состав и концентрацию. В зависимости от этого агрессивные грунтовые воды подразделяют на: общекислотные, выщелачивающие, сульфатные, углекислотные и др. Колебания УГВ активизируют выщелачивание извести в бетонных конструкциях. Дождевая вода захватывает из атмосферы большое количество газообразных производственных выбросов (оксиды углерода, серы, азота, фосфора, аммиак, хлор, хлористый водород). Дождь превращается в кислотный раствор, разрушающий бетон, мрамор, силикатный кирпич, при этом увеличивается количество пор, капилляров, трещин. Содержание оксидов серы и азота не вызывает смещение углекислотного равновесия. Углекислый газ превращает нерастворимый кальций в водорастворимый гидрокарбонат кальция.

СаС03 + С02 + Н20 = Са(НС03)2

Выбор типа гидроизоляции зависит от химического состава и уровня грунтовых вод.

Гидроизоляционные материалы предназначены для защиты различных строительных конструкций от поверхностного износа и трещин, т.е. от вредного воздействия воды (антифильтрационная гидроизоляция) и агрессивной внешней среды (антикоррозионная гидроизоляция). Технические решения по защите строительных конструкций должны быть самостоятельной частью проектов зданий и сооружений. При проектировании защиты строительных конструкций и материалов следует учитывать характеристики агрессивной среды, в условиях которой происходят те или иные коррозионные разрушения. В зависимости от физического состояния агрессивные среды подразделяют на газообразные, жидкие и твердые.

Гидроизоляция подземных сооружений: а — от напора грунтовых вод; б — от грунтовой капиллярной влаги; 1 — гидроизоляция; 2 — подстилающий слой (подготовка); 3 — несущая конструкция; 4 — защитная стяжка; 5 — защитное ограждение гидроизоляции (устраивается при необходимости); 6 — максимальный уровень грунтовых вод; 7 — планировочная отметка земли; 8 — шпонка 100*150 мм из горячих асфальтовых материалов

Гидроизоляция заглубленных сооружений: а — от напора грунтовых вод; б — от грунтовой капиллярной влаги; 1 — гидроизоляция от напора грунтовых вод; 2 — подстилающий слой (подготовка); 3 — несущая конструкция; 4 — гидроизоляция от капиллярной влаги; 5 — защитное ограждение гидроизоляции (устраивается при необходимости); 6 — максимальный уровень грунтовых вод; 7 — планировочная отметка земли; 8 — шпонка 100*150 мм из горячих асфальтовых материалов

В зависимости от интенсивности агрессивного воздействия на строительные конструкции среды подразделяют на классы, которые определяют по отношению к конкретному не защищенному от коррозии материалу. Среды, воздействующие на бетонные и железобетонные конструкции, подразделяют на слабо-, средне- и сильноагрессивные. В зависимости от характера воздействия агрессивных сред на строительный материал их подразделяют на химические (например, сульфатная, магнезиальная, кислотная, щелочная и т.п.) и биологические.

Вид и степень ответственности подземных конструкций также влияет на выбор защиты. По этим признакам следует различать строительные конструкции, которые рассчитывают на прочность, устойчивость, деформацию (основные фундаменты под здания) и многочисленные фундаменты мелкого заложения (выполняемые без расчетов) из бетона или железобетона с конструктивным армированием. Как правило, они имеют большие запасы прочности. Для конструкции этого типа нормы агрессивности подземных вод допустимо принимать со значительно более высокими показателями ввиду меньшей степени ответственности самой конструкции. Нормы могут быть увеличены по предельным значениям водородного показателя рН, ионам окислов S04-, Cl на 25 —30%. По отдельным параметрам, например бикарбонатной щелочности и углекислоте, защита вообще не требуется. В старых постройках во влажных местах выступают соляные пятна. Речь идет о вредных солях группы хлоридов, сульфатов и нитратов. Соли обладают свойством даже из воздуха впитывать влагу, накапливать и вновь выделять. При этом повторяющемся процессе образуются кристаллы соли. Они усиливаются путем соединения новой кристаллизирующейся соли со старыми кристаллами. Кристаллизация приводит к разрушению материалов. Поднимающаяся капиллярная влага устраняется бурением горизонтальных отверстий и заполнением их «Аквафин-Ф» или его аналогом. Повреждения от ржавчины, которые можно наблюдать на сооружениях, являются проявлением сложного процесса ухудшения состояния бетона. Обычно арматурная сталь надежно защищена растворной частью бетона, поскольку высокий водородный показатель (примерно =13) бетона укрепляет тонкую защитную пленку металла, покрывающую арматуру. Если величина рН уменьшается, то пленка перестает защищать арматуру, и арматура подвергается электрохимической реакции (ржавлению).

Читайте также  Прозрачная гидроизоляция

В зависимости от гидростатического напора применяются различные типы гидроизоляции:

Источник:
http://build.novosibdom.ru/node/92

Гидроизоляция подземных сооружений

Одной из актуальных проблем строительства и эксплуатации существующих зданий и сооружений является гидрозащита и восстановление несущей способности строительных конструкций. Вид и механизм увлажнения различные не только для одного объекта в целом, но и для отдельно взятой конструкции. Эффективная система защиты от увлажнения определяется только после выявления источника увлажнения, установления характера взаимодействия конструкции с окружающей средой и степени сохранности конструкционного и отделочного материалов. Вода действует на строительные конструкции с наружной или внутренней стороны (атмосферная и грунтовая).

Вода, действующая на конструкцию, может быть трех видов: фильтрационная, или просачивающаяся, вода возникает от дождевых, талых и случайных стоков и не оказывает на конструкцию гидростатического давления, если конструктивное решение обеспечивает беспрепятственное отекание воды без образования застойных зон; почвенная, или грунтовая, вода удерживается в грунте адгезионными и капиллярными силами и не оказывает на конструкцию гидростатического давления, если конструктивное решение обеспечивает беспрепятственное стекание воды без образования застойных зон; подземная вода обусловливается уровнем грунтовых вод в зависимости от рельефа местности и положением водоупорного слоя.

Три категории гидрофизической нагрузки подземных вод:

  • нагрузка влажностью материала строительной конструкции. Вода связана или двигается в порах и капиллярах строительных конструкций. Интенсивность нагрузки зависит от места нахождения, от источника влаги, пористости материала конструкции и температуры;
  • нагрузка свободно стекающей (гравитационной) водой (дождем) возникает под влиянием воды в жидком состоянии, которая не образует давления или образует очень низкое давление. Вода стекает вдоль вертикальных или наклонных поверхностей строительных конструкций, нигде не задерживается и не образует связную поверхность. Интенсивность нагрузки зависит от количества стекающей воды и уклона гидроизоляции;
  • нагрузка напорной водой (самая опасная) возникает под действием воды в жидком виде, измеряется гидростатическим давлением. В водопроницаемых материалах образуется связный уровень, под которым вода может распространяться во всех направлениях. Интенсивность нагрузки зависит от гидростатического давления воды.

От напорных грунтовых вод проводят следующие мероприятия:

  • дренирование;
  • формирование местности и объекта;
  • образование гидроизоляционной системы.

Эти мероприятия, прежде всего, влияют на изменение уровня подземной воды. Они не устраняют необходимость проведения самой гидроизоляции, но могут существенно снизить финансовые расходы на ее проведение.

От напорных вод можно применять:

  • конструктивные материалы (например, водоплотные бетоны);
  • особые гидроизоляционные слои;
  • инъецирование;
  • электроосмос;
  • «воздушное дупло».

Прежде, чем приступать к гидроизоляции подземных сооружений, необходимо выполнить следующие этапы:

  • получить техническое задание от заказчика;
  • провести обследование объекта с выбуриванием керна;
  • провести проходку шурфов;
  • установить наблюдение за гидрогеологической обстановкой: фиксируется максимальный уровень и химический состав воды, а также коэффициент фильтрации и кривая зернистости, состав земляного профиля, механическая стабильность почвы; химические температуры, биологические и электромагнитные влияния (т.е. коррозионная стойкость);
  • выдать техническое заключение по ремонту объекта, в котором учесть совместимость гидроизоляции с материалом конструкции;
  • провести работы в соответствии с выданным заключением.

В весенний период оттаивания повышается уровень грунтовых вод (УГВ), которые, взаимодействуя с минеральными и органическими частицами, изменяют свой химический состав и концентрацию. В зависимости от этого агрессивные грунтовые воды подразделяют на: общекислотные, выщелачивающие, сульфатные, углекислотные и др. Колебания УГВ активизируют выщелачивание извести в бетонных конструкциях. Дождевая вода захватывает из атмосферы большое количество газообразных производственных выбросов (оксиды углерода, серы, азота, фосфора, аммиак, хлор, хлористый водород). Дождь превращается в кислотный раствор, разрушающий бетон, мрамор, силикатный кирпич, при этом увеличивается количество пор, капилляров, трещин. Содержание оксидов серы и азота не вызывает смещение углекислотного равновесия. Углекислый газ превращает нерастворимый кальций в водорастворимый гидрокарбонат кальция.

СаС03 + С02 + Н20 = Са(НС03)2

Выбор типа гидроизоляции зависит от химического состава и уровня грунтовых вод.

Гидроизоляционные материалы предназначены для защиты различных строительных конструкций от поверхностного износа и трещин, т.е. от вредного воздействия воды (антифильтрационная гидроизоляция) и агрессивной внешней среды (антикоррозионная гидроизоляция). Технические решения по защите строительных конструкций должны быть самостоятельной частью проектов зданий и сооружений. При проектировании защиты строительных конструкций и материалов следует учитывать характеристики агрессивной среды, в условиях которой происходят те или иные коррозионные разрушения. В зависимости от физического состояния агрессивные среды подразделяют на газообразные, жидкие и твердые.

В зависимости от интенсивности агрессивного воздействия на строительные конструкции среды подразделяют на классы, которые определяют по отношению к конкретному не защищенному от коррозии материалу. Среды, воздействующие на бетонные и железобетонные конструкции, подразделяют на слабо-, средне- и сильноагрессивные. В зависимости от характера воздействия агрессивных сред на строительный материал их подразделяют на химические (например, сульфатная, магнезиальная, кислотная, щелочная и т.п.) и биологические.

Вид и степень ответственности подземных конструкций также влияет на выбор защиты. По этим признакам следует различать строительные конструкции, которые рассчитывают на прочность, устойчивость, деформацию (основные фундаменты под здания) и многочисленные фундаменты мелкого заложения (выполняемые без расчетов) из бетона или железобетона с конструктивным армированием. Как правило, они имеют большие запасы прочности. Для конструкции этого типа нормы агрессивности подземных вод допустимо принимать со значительно более высокими показателями ввиду меньшей степени ответственности самой конструкции. Нормы могут быть увеличены по предельным значениям водородного показателя рН, ионам окислов S04-, Cl на 25 —30%. По отдельным параметрам, например бикарбонатной щелочности и углекислоте, защита вообще не требуется. В старых постройках во влажных местах выступают соляные пятна. Речь идет о вредных солях группы хлоридов, сульфатов и нитратов. Соли обладают свойством даже из воздуха впитывать влагу, накапливать и вновь выделять. При этом повторяющемся процессе образуются кристаллы соли. Они усиливаются путем соединения новой кристаллизирующейся соли со старыми кристаллами. Кристаллизация приводит к разрушению материалов. Поднимающаяся капиллярная влага устраняется бурением горизонтальных отверстий и заполнением их «Аквафин-Ф» или его аналогом. Повреждения от ржавчины, которые можно наблюдать на сооружениях, являются проявлением сложного процесса ухудшения состояния бетона. Обычно арматурная сталь надежно защищена растворной частью бетона, поскольку высокий водородный показатель (примерно =13) бетона укрепляет тонкую защитную пленку металла, покрывающую арматуру. Если величина рН уменьшается, то пленка перестает защищать арматуру, и арматура подвергается электрохимической реакции (ржавлению).

В зависимости от гидростатического напора применяются различные типы гидроизоляции:

Источник:
http://samstroy.com/%D0%B3%D0%B8%D0%B4%D1%80%D0%BE%D0%B8%D0%B7%D0%BE%D0%BB%D1%8F%D1%86%D0%B8%D1%8F-%D0%BF%D0%BE%D0%B4%D0%B7%D0%B5%D0%BC%D0%BD%D1%8B%D1%85-%D1%81%D0%BE%D0%BE%D1%80%D1%83%D0%B6%D0%B5%D0%BD%D0%B8%D0%B9/